
How To Parse the KiCad Netlist
Doc. Version 2017-07-01-1

Author: Mario Blunk

Abstract: Guideline to implement software that parses the KiCad netlist or similar files with
bracket orientated hierarchic structures.

Keywords: EDA, KiCad, netlist, device, name, value, package, pin, net, algorithm, flow-
chart, hierarchic, bracket, section, subsection, keyword, argument, open source, boundary
scan, JTAG, list, map, programming language, Ada

We appreciate every feedback that helps to improve this document !
Please send your comments to info(@)blunk-electronic.de !

Thank you !

Blunk electronic at www.blunk-electronic.de Page 1/6

http://www.blunk-electronic.de/

Table of Contents
 1 About KiCad..3
 2 The Problem to Solve..3
 3 Versions...3

 3.1 File Structure..3
 3.2 Netlists Used..3

 4 The Basic Algorithm..4
 5 Dealing with Lines...5
 6 Implementation..6
 7 Links..6
 8 Disclaimer..6

Blunk electronic at www.blunk-electronic.de Page 2/6

http://www.blunk-electronic.de/

 1 About KiCad
Instead of many words, just have a look at http://kicad-pcb.org/ .

 2 The Problem to Solve
A given KiCad netlist is to be imported into the Boundary Scan Test System M-1 . The
result of the import process shall be a map of devices (or device list) and a map of nets (or
a list of nets). Both maps serve as source to create the system internal skeleton netlist for
further test generation.

 3 Versions
The approach outlined below has been developed and tested with KiCad Version 4.0.4-
stable. This version exports a netlist from Eeschema (the schematic editor) in format
version D.

 3.1 File Structure

The KiCad netlist stores project data, devices and nets in sections. A section starts with an
opening round bracket. Right after the opening bracket the section name follows. The
section name is a keyword that indicates the information stored inside the particular
section. The text after the keyword, which is not enclosed in brackets, is called the
argument.

Subsections are structured the same way and may be nested down to an unlimited level in
hierarchy.

 3.2 Netlists Used

The dummy netlist used for developing the following approach and its testing can be found
at:

https://github.com/Blunk-electronic/M-1/blob/master/uut/mmu/cad/transmission_line.ne t

Blunk electronic at www.blunk-electronic.de Page 3/6

http://www.blunk-electronic.de/
https://github.com/Blunk-electronic/M-1/blob/master/uut/mmu/cad/transmission_line.net
https://github.com/Blunk-electronic/M-1/blob/master/uut/mmu/cad/transmission_line.net
http://www.blunk-electronic.de/products.html
http://www.blunk-electronic.de/products.html
http://kicad-pcb.org/

 4 The Basic Algorithm
For the start we ignore the fact that the KiCad netlist file has many lines. We assume all
characters are rowed up in a single long line.

The light green box labeled with “process KW & ARG” is the procedure where we first pop
the latest keyword from stack and then do the actual work with the keyword and its
argument, for example inserting devices, pins and nets in lists or maps. After this
procedure we must check the stack depth. If the top level has been reached (on the last

Blunk electronic at www.blunk-electronic.de Page 4/6

Start

cursor := pos. of first OB

PROC READ KW

cursor := pos. of next char.

char@cursor = OB ?
y

n

PROC READ ARG

cursor := pos. of next char.

char@cursor = CB ?
n

y

error

process KW & ARG

level = 0 ? Endy
n

cursor := pos. of next char.

char@cursor = CB ?
y

n

char@cursor = OB ?

n

y

Notes:
A: OB means opening bracket
B: CB means closing bracket
C: char_set is a set of characters
 containing space,horizontal tab, line feed, OB
D: KW means keyword
E: ARG means argument
F: next char means the next
 non-blank character (0..9,a..z,A..Z,OB/CB)

cursor := pos. of next char.

end_of_kw := (pos. of next char_set)-1

Start

End

PROC READ KW

cursor := end_of_kw

KW := char@cursor .. char@end_of_kw

push KW on stack

verify KW

end_of_arg := (pos. of next char_set)-1

Start

End

PROC READ ARG

cursor := end_of_arg

arg := char@cursor .. char@end_of_arg

get line

http://www.blunk-electronic.de/

closing bracket) the import is complete and the algorithm ends. See implementation details
in section 6 Implementation on page 6.

 5 Dealing with Lines
The reality is: There are many lines and we must permanently feed the algorithm with new
lines if necessary. The box with the action ”cursor := pos of next char” is now replaced by
procedure PROC P1 (yellow box). Its purpose is to update the cursor position to the
position of the next character starting from the current cursor position AND to fetch a new
line if there are no further characters after current cursor position.

Blunk electronic at www.blunk-electronic.de Page 5/6

Start

cursor := pos. of first OB

PROG READ KW

PROC P1

char@cursor = OB ?
y

n

PROC READ ARG

PROC P1

char@cursor = CB ?
n

y

error

process KW & ARG

level = 0 ? Endy
n

PROC P1

char@cursor = CB ?
y

n

char@cursor = OB ?

n

y

PROC P1

cursor := pos. of next char.

get next line

cursor = 0 ?
y

n

Start

End

PROC P1

NOTE: cursor = 0 means : no character found

get first line

Notes:
A: OB means opening bracket
B: CB means closing bracket
C: char_set is a set of characters
 containing space,horizontal tab, line feed, OB
D: KW means keyword
E: ARG means argument
F: next char means the next
 non-blank character (0..9,a..z,A..Z,OB/CB)

http://www.blunk-electronic.de/

 6 Implementation
The approach proposed here can be implemented in any programming language. The
realization in Ada 2005 can be found at:

https://github.com/Blunk-electronic/M-1/blob/master/src/impkicad/impkicad.adb

 7 Links
find updates of this document at www.blunk-electronic.de

Simplify manufacturing fault detection, hardware bring-up, debugging and system
tests with System M-1 the OpenSource Boundary Scan/JTAG Test System at

 http://www.blunk-electronic.de/products.html

 8 Disclaimer
This document is believed to be accurate and reliable. I do not assume responsibility for
any errors which may appear in this document. I reserve the right to change it at any time
without notice, and do not make any commitment to update the information contained
herein.

Blunk electronic / Owner : Dipl. Ing. Mario Blunk / Buchfinkenweg 3 / 99097 Erfurt / Germany / Phone +49 361 6022 5184

© 2017 Mario Blunk Printed in Germany

Blunk electronic at www.blunk-electronic.de Page 6/6

http://www.blunk-electronic.de/
http://www.blunk-electronic.de/products.html
http://www.blunk-electronic.de/
https://github.com/Blunk-electronic/M-1/blob/master/src/impkicad/impkicad.adb

	1 About KiCad
	2 The Problem to Solve
	3 Versions
	3.1 File Structure
	3.2 Netlists Used

	4 The Basic Algorithm
	5 Dealing with Lines
	6 Implementation
	7 Links
	8 Disclaimer

